skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ong, Maria Rosabelle"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The Great Atlantic Sargassum Belt (GASB) first appeared in 2011 and quickly became the largest interconnected floating biome globally. Sargassum spp. requires both phosphorus (P) and nitrogen (N) for growth, yet the sources fueling the GASB are unclear. Here, we use coral–bound nitrogen isotopes from six coral cores to reconstruct N2 fixation, the primary source of bioavailable N to the surface ocean across the wider Caribbean over the past 120 years. Our data indicate that changes in N2 fixation were controlled by multidecadal and interannual changes in the supply of excess P from equatorial upwelling in the Atlantic. We show that the supply of P from equatorial upwelling and N from the N2 fixation response can explain the extent of the GASB since 2011. # Equatorial upwelling of phosphorus drives Atlantic N~2~ fixation and *Sargassum* blooms This Excel file contains time series data combining coral geochemical records (δ¹⁵N and δ¹⁸O), climate indices, Sargassum biomass, and major riverine outflows. The dataset integrates multiple spatially distributed records to examine long-term variability in nutrient dynamics, climate forcing, and ecological responses in the Caribbean and tropical Atlantic. Values that were not available or are missing are indicated as N/A. ## Column Reference Table File: Caribbean_data_for_DRYAD.xlsx | Column Name | Description | | :----------------------------------- | :------------------------------------------------------------------------------------------------- | | **Year\_CR\_Turneffe** | Calendar year of sampling for coral records from Turneffe Atoll (Belize) and Cahuita (Costa Rica). | | **Cahuita Costa Rica\_d18O\_ts** | Coral δ¹⁸O time series from Cahuita, Costa Rica (proxy for SST and freshwater input). | | **d15N\_CR** | Coral-bound δ¹⁵N from Cahuita, Costa Rica (proxy for nitrogen source/processing). | | **Turneffe Atoll\_d18O\_ts** | Coral δ¹⁸O time series from Turneffe Atoll, Belize. | | **d15N\_Turneffe** | Coral-bound δ¹⁵N from Turneffe Atoll. | | **Date\_MQ** | Sampling date for Martinique (MQ) site. | | **d18O\_MQ** | Coral δ¹⁸O from Martinique. | | **d15N\_MQ** | Coral δ¹⁵N from Martinique. | | **Year Bermuda** | Calendar year for Bermuda coral samples. | | **d15N Bermuda** | Coral δ¹⁵N from Bermuda. | | **Year\_CUBA** | Calendar year for Cuban coral records. | | **d15N\_CUBA** | Coral δ¹⁵N from Cuba. | | **d15N\_Mexico** | Coral δ¹⁵N from Mexico. | | **Year\_Tobago** | Calendar year for Tobago coral samples. | | **d15N\_Tobago** | Coral δ¹⁵N from Tobago. | | **Year AMM** | Year corresponding to Atlantic Meridional Mode (AMM) values. | | **AMM\_SST** | Sea Surface Temperature anomalies associated with the AMM. | | **AMM\_Wind** | Wind anomalies associated with the AMM. | | **AMO** | Atlantic Multidecadal Oscillation index value. | | **average\_year** | Averaged year across all coral records included. | | **AVERAGE\_rescaled** | Composite δ¹⁵N record rescaled across sites. | | **error\_propagated** | Propagated error estimate for the rescaled average. | | **AVERAGE\_rescaled\_noCR\_BM\_TB** | Rescaled δ¹⁵N average excluding Costa Rica, Bermuda, and Tobago. | | **error\_propagated2** | Propagated error for the reduced-site average. | | **Months Sargassum** | Month of Sargassum observation. | | **Monthly Sargassum biomass (tons)** | Monthly biomass estimates of pelagic Sargassum (tons). | | **Year\_SST\_SSS** | Year corresponding to SST/SSS data. | | **SST\_10-20N\_20-60W** | Sea Surface Temperature average over 10–20°N, 20–60°W. | | **SSS\_10-20N\_20-60W** | Sea Surface Salinity average over the same region. | | **U\_windstress\_10\_20N\_58\_62W** | Zonal wind stress (10–20°N, 58–62°W). | | **windspeed\_0\_20N\_20\_50W** | Mean wind speed (0–20°N, 20–50°W). | | **Geo\_u\_12\_18N\_60\_80W (CC)** | Geostrophic zonal velocity (12–18°N, 60–80°W), Caribbean Current proxy. | | **DU\_scav\_areaweight** | Dust deposition (scavenging flux, area-weighted). | | **DU\_ddep\_areaweight** | Dust dry deposition (area-weighted). | | **BC\_scav\_areaweight** | Black carbon scavenging flux (area-weighted). | | **Bc\_ddep\_areaweight** | Black carbon dry deposition (area-weighted). | | **BC\_total\_areaweight** | Total black carbon deposition (area-weighted). | | **DU\_total\_areaweight** | Total dust deposition (area-weighted). | | **Obidos\_Amazon\_m3\_s** | Amazon River discharge at Óbidos station (m³/s). | | **Ciudad Bolivar\_Orinoco\_m3\_s** | Orinoco River discharge at Ciudad Bolívar (m³/s). | | **Year Pstar** | Year corresponding to P\* (phosphorus excess) record. | | **Pstar** | Phosphorus excess (indicator of nutrient balance, micro Molar). | | **Amazon\_outflow\_date** | Date of Amazon outflow measurement. | | **Amazon\_outflow\_km3** | Amazon River outflow volume (km³). | | **Orinoco\_outflow\_date** | Date of Orinoco outflow measurement. | | **Orinoco\_outflow\_km3** | Orinoco River outflow volume (km³). | Links to other publicly accessible locations of the data: * [https://climexp.knmi.nl](http://...) Data was derived from the following sources: * Climate Explorer was used for gridded satellite-derived products (SST, SSS, windspeed, windstress) by using the geographical extent as indicated in the manuscript ## Code/Software No software was used for data analysis, and the codes used for figures and data analyses are available on GitHub ([https://github.com/marinejon/](https://github.com/marinejon/)) 
    more » « less
  2. Abstract. The response of the hydrological cycle to anthropogenic climatechange, especially across the tropical oceans, remains poorly understood due to the scarcity of long instrumental temperature and hydrological records. Massive shallow-water corals are ideally suited to reconstructing past oceanic variability as they are widely distributed across the tropics,rapidly deposit calcium carbonate skeletons that continuously record ambient environmental conditions, and can be sampled at monthly to annualresolution. Climate reconstructions based on corals primarily use the stable oxygen isotope composition (δ18O), which acts as a proxy for sea surface temperature (SST), and the oxygen isotope composition ofseawater (δ18Osw), a measure of hydrological variability. Increasingly, coral δ18O time series are paired with time series of strontium-to-calcium ratios (Sr/Ca), a proxy for SST, from the same coral to quantify temperature and δ18Osw variabilitythrough time. To increase the utility of such reconstructions, we presentthe CoralHydro2k database, a compilation of published, peer-reviewed coral Sr/Ca and δ18O records from the Common Era (CE). The database contains 54 paired Sr/Ca–δ18O records and 125 unpaired Sr/Ca or δ18O records, with 88 % of these records providing data coverage from 1800 CE to the present. A quality-controlled set of metadata with standardized vocabulary and units accompanies each record, informing the useof the database. The CoralHydro2k database tracks large-scale temperatureand hydrological variability. As such, it is well-suited for investigationsof past climate variability, comparisons with climate model simulationsincluding isotope-enabled models, and application in paleodata-assimilation projects. The CoralHydro2k database is available in Linked Paleo Data (LiPD) format with serializations in MATLAB, R, and Python and can be downloaded from the NOAA National Center for Environmental Information's Paleoclimate Data Archive at https://doi.org/10.25921/yp94-v135 (Walter et al., 2022). 
    more » « less
  3. Abstract Massive, long‐livedSiderastreaandDiploriacorals are species commonly used for sea surface temperature (SST) reconstructions in the North Atlantic. However, they are rarely found to exceed 200 years in age. Thus, it is imperative to continuously develop alternative taxa for paleoreconstructions.Colpophyllia natans, a highly populous tropical North Atlantic coral, are known to grow large colonies, potentially containing environmental records spanning several hundreds of years. However, its low density and complicated architecture poses a challenge in extracting climate signals from this coral. This study presents the first monthly‐resolved climate calibration ofColpophyllia natansand validates its utility as a new paleoarchive, relative toSiderastrea siderea.Linear regressions of monthly and interannual coral Sr/Ca with instrumental SST reveal robust, significant relationships (p < 0.05), indicating that microsampling along a single thecal wall ofC. natansallowed for robust climate reconstructions. Additionally, both corals capture similar SST variations (t‐test,p ≥ 0.05), which allowed for the generation of a single, composite interspecies SST record that correlates with instrumental SST even more strongly (p < 0.0001) than the individual corals. Mean annual and boreal summer interspecies SST correlate significantly with North Atlantic SST indices (p < 0.05), demonstrating the ability to capture regional, long‐term SST trends in the North Atlantic. Spatial correlation maps of boreal winter interspecies SST to instrumental SST and geopotential height anomalies reveal coherent spatial patterns linked to the North Atlantic Oscillation. Our findings suggest thatColpophyllia natanshas enormous potential as a new paleoclimate archive for reconstructing temporal and spatial SST variability in the tropical Atlantic. 
    more » « less